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The problem of the contact between two plates, one of which has a vertical crack which reaches the outer edge, is considered. 
It is assumed that, in the natural state, the plates are a specified distance from one another. The displacements of points on the 
plates satisfy two constraints of the inequality type. One of these describes the condition of non-penetration between the plates 
and is specified at internal points of the region, while the other describes the mutual non-penetration of the edges of the crack 
and is specified on the boundary of the region. The presence of a crack means that, first, the solution of the problem is sought 
in a region with a non-smooth boundary, and, second, the boundary conditions on the boundary of the region are given in the 
form of inequalities. It is proved that the equilibrium problem is solvable. Additional smoothness of the solution up to internal 
points of the crack is established. It is shown that the problem of controlling external loads with an objective functional, 
characterizing the opening of the crack, is solvable. For cracks of zero opening it is shown that the solution belongs to class 
C" in the region of the bolmdary for smooth external data. The convergence of the solutions of optimal-control problems as the 
thickness of the plates approaches zero is analysed. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  
T H E  E X I S T E N C E  OF A S O L U T I O N  

Suppose L2 C R 2 is a bounded region with an infinitely differentiable boundary F, and F v is the graph 
of the functiony = ¥(x),x ~ [0, 1], (x,y) ~ ~ ,  ¥ e H3(0, 1). We will assume that F v and F have a single 
common p o i n t p t h e  origin of coordinates (0, 0), and the angle between F, and F v at the point (0, 0) is 
positive (Fig. 1). Here  D~, -- f~\F~, corresponds to the middle surface of the plate while F~, is the trace 
of the crack in the x, y plane. The crack, like the surface in R 3, is described by the relations y = W(x), 
- e  ~< x ~< e, where 2~ is the thickness of the plate. The middle surface of the plate lies in the z = 0 
plane, and the z axis is directed orthogonal to the x, y plane. The second plate (which has no cracks) 
can be in contact with the first (containing a crack) and is also ze thick. 

We will assume that, in the natural state, the plates are situated at a specified distance 8 I> 0 from 
one another (8 = const) and may be in contact with one another in view of the presence of external 
loads (Fig. 2). The middle surface of the second plate occupies the region f~. The direction of  the z 
axis is chosen so that the middle surface of the second plate has a negative coordinate z. The first plate 
will therefore be called the upper  plate, and the second will be called the lower plate. 

We will denote  by X = (W, w), ~ = (U, u) the displacement vectors of points of the middle surface 
of the upper  and lower plates respectively, where W = (w 1, wE), w are the horizontal and vertical 
displacements of the upper  plate, and U = (u 1, u 2) and u are the horizontal and vertical displacements 
of the lower plate. Suppose e~(W) are the components of the strain tensor of the middle plane of 
the upper plate while a/j = o0(W ) are the components of the stress tensors in dimensionless form, 
where 

OH =l~H +ke22, q22 = ~  +k~n, o~2 =(1-k)g~2, k=cons t ,  

1 
~'ij(W)'--'--~--+--j'2 ~xj ~'~i ' ' j  =1'2' x I =x ,  x 2 =y  

The energy functional of the upper  plate can be written in the form 

1 
O < k < -  (1.1) 

2 

1 1 -(/.zh,. 
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Fig. 1. Fig. 2. 

Bv(w,~) = ~(wx.x~ ~ + wyy~yy +kwxx~ ~ +kwry~ ~ + 2(1- k)wx,:~xy)d£~ v 
flv 

where., the brackets (., .)~.denote integration over. gi v, f is the vector, of. the external loads while. B v is a 
bilinear form, charactermng the flexural propertms of the plate. Similarly, the energy functional of the 
lower plate has the form 

I B(u,u)+I((~ij(U), ~ij(U))-(g,~), g=(gl,g2,g3)Ee(~'~) Ils(~) = ~ " 

B(u, ~) = ~ autuTdn 
O 

where the brackets (., .) denote integration over I'~. 
The functional of the combined energy of the two plates can therefore be represented in the form 

nAz ) + 
As has already been noted, the upper plate has a vertical crack, the form of which is specified. The 

condition for mutual non-penetration of the crack edges has the form [1] 

[W]v >~l~l[Ow/Ov]l on Fv, v =(Ul,V2)=(-Vx,1)/ l ~  2 (1.2) 

where u is the normal to the graph of F v, [V] = V + - V- is the jump in the function V at the crack 
edges, and the plus and minus superscripts correspond to positive and negative directions of the normal 

respectively. 
The plates may interact with one another but the displacement vectors must be such that there is no 

mutual penetration of points of the plates. The corresponding non-penetration condition can be written 
in the form 

w~>u-Sin fly (1.3) 

We will assume that all the main physical parameters of the lower plate are identical with the 
parameters of the upper plate. In particular, the relation between the stress and strain tensors for the 
lower plate area the same as in (1.1). 

We will specify the following boundary conditions on the outer boundary 

w=OwlOn=W=O, u=aulOn=U=O o n F  (1.4) 

(n is the outward normal to F). 
We will now formulate the variational form of the problem on the equilibrium of two plates. 
Suppose H 1' °(D~) is a space of Sobolev functions, havingtderivatives up to the first order inclusive 

in D~, summed with a square and equal to zero on F and H '  °(fly) C HI(D~). Similarly the elements 
of/-/" °(D~) vanish together with the first derivatives on F and have derivatives up to the second order 
inclusive, summed with a square, and H 2' °(D.v) C H2(fiv). We will denote by H02(fi) the closure in the 
norm of H2(~) of the set of all smooth functions, finite in f~. Suppose also that H(giv) = H I' °(D~) x 
H I' °(D.v) x H 2' °(fly) , H0(f~) = H~(fi) x H~(£~) x H02(f~). In a number of places, for brevity, we will use 
the notation H = H(D~) x H0(f~). 

We will further introduce the following notation for the set of permissible displacements of the plates: 
K~ = {(g, ~) e H(Dw) x H0(fl)l (g, ~) satisfy conditions (1.2) and (1.3). 
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The solution of the problem of the equilibrium of two plates, formulated below, will be an element 
of the set Kv In particular, the smoothness of the solution will follow from the fact that it belongs to 
the space H. The problem of equilibrium can be formulated as a problem of minimizing the functional 
of the total energy in the set of permissible displacements, namely 

inf {I'I1 (X) + Fig (~)} 

In view of the convexity and differentiability of the functional l-I/(g) + Fig(~) in the space H, this 
problem is equivalent to the variational inequality 

l-I). (Z)(X - Z) + H i (~)(~- ~) ~> 0, (X, ~) ~ K,, V( i ,  ~) e K t (1.5) 

where FI~(X) and FI~(~) are derivatives of the functions I-l/and Fig, respectively, at the points X, ~. Note, 
first of all, the correctness of the following inequalities with constants that do not depend on the functions 
w,u, Wand U 

cUwll . ,. Vw ~ H2.°(n~¢), B(u,u)>~ cll,,ll{n, v,, Hgfn) (1.6) 

(oo(w), co(w)), cllWll ,n , n"°(n,) (1.7) 

where II'lk ~ is the norm in/-/*' °(Dw). In addition 

cllUll .n, rig(n) (1.8) 

Inequalities (1.6) are obtained after double use of the Poincar6 inequality, while (1.7) and (1.8) are 
obtained by using the Korn inequality for the regions D w and ~ respectively. We introduce the following 
notation for the bilinear form 

a('q,~)=B.(w,~)+B(u,E)+(f~o(W), si,(W))v+(f~ij(.), I~o(U')) (1.9) 

where 1] = (X, ~), X = (W, w), ~ = (U, u), and similarly for fl = (Z, ~). By virtue of inequalities (1.6)-(1.8) 
the following limit holds 

cll ll ,, U (1.10) 

Inequality (1.5) can be written in terms of the function 11 = (X, ~) in the form 

a(rl,~-'q)>~(f,~-X)+(g,'~-~), V'~ = (~,~) e Kt (1.11) 

According to inequality (1.10), the functional FI/(x) + Flg(x ) is coercive in H, and, since it is weakly 
semicontinuous from below, problem (1.5) (or problem (1.11)) has a solution. The solution will be 
unique. Note also that in the regions D w and fl the following equations are satisfied in the sense of 
distributions 

-Gi/.j (W) = 3~, - aij,j (U) = gi, i = 1, 2 (1.12) 

To check the correctness of the first e qzuations it is sufficient to take (~, ~) -- (X + X, ~) as test functions 
in (1.5), where ~ = (1~, 0), 1~_~ (C~0(Dw)) and (X, ~) is the solution of (1.5). To check the second equations 
it is sufficient to choose (~, ~) = (X, ~ + ~) as test functions in (1.5), where ~ = (U, 0), U e (C~0(f~)) 2. 

We will briefly describe the content of this paper. In Section 2 we will establish the additional regularity 
of the solution up to internal points 1"4. Roughly speaking, the smoothness of the solution can be 
increased by unity compared with the variational smoothness, which is determined by the inclusion (X, 
~) ~ K,. This result will be established using finite differences. Section 3 is devoted to an analysis of 
the problem of optimal control with a quality functional characterizing the opening of the crack. The 
main result of this section is to prove the infinite differentiability of the solution in the case when the 
opening of the crack is zero. Finally, in Section 4 we investigate the limit as e ---> 0, corresponding to 
the transition from the accurate condition of non-penetration (1.2) to the approximate condition, 
characterized by the value e = 0 in (1.2). We note here that in fact the accurate formulation of the 
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problem of the equilibrium of the plates should include the parameter e notonly in the form (1•2). In 
fact, other quantities also depend on e, for example, the equations of equilibrium (1.12) should contain 

as a factor in front of o/jj(W), o~/~(U), the bilinear formsB , B should contain the factor e 3, ete Hence, 
• . • • • ~ q  . . . .  " ° 

this passage to the ltm~t does not mdtcate that the passage to the limit of the thickness ~s earned out 
in the problem of the equilibrium of two plates. It means a transition from the accurate condition of 
non-penetration (1.2) to the approximate condition corresponding to e = 0. In particular, it follows 
from this that, in the context of this paper, the thickness of the lower plate is in fact fixed and its equality 
to 2e is not fundamental. 

The regularity of the solutions of the boundary-value problems for the equations of the theory of 
elasticity with non-smooth regions (including the biharmonic equation) was investigated previously [1, 
3-9]. The smoothness of the solutions for elliptic equations was also investigated in the case when 
constraints on the solution of the inequality type are specified on the surface of a lesser dimension [10, 
11]. The problem, analysed in this paper, contains both a non-smooth boundary and limitations of the 
inequality type on the boundary. In fact, the constraints on F~ must be considered as part of the boundary 
conditions. The search for a complete set of boundary conditions on F~/in this case is an independent 
problem. Inequality (1.2) in this case is one of the boundary conditions, specified on the boundary. Other 
problems relating to the change in the form of the cracks (and consequently, the change in the form 
of the region in which a solution is sought), can be found in [12-15]. 

2. THE R E G U L A R I T Y  OF THE S O L U T I O N  

The purpose of this section is to investigate the smoothness of the solution up to internal points F v. 
Suppose, first of all, that (Z, ~) is a solution of problem (1.5). A sphere of radius ~ with centre at the 

point x ° will be denoted by R~(xU). The additional smoothness of the solution in the region of the chosen 
point, belonging to Fv\OFv, will be proved with the additional assumption that F4 is a rectilinear section 
in the region of this point• We have the following assertion. 

0 0 0 Theorem 1. Suppose x ~ F~,\OF~, and D(x ) is a neighbourhood of the point x such that F~, rl D(x °) 
is a rectilinear section parallel to the x axis. A L > 0 then exists such that 

W,w x ~ n2(Rx(x°)c~F~v),  V,u x ~ H2(Rx(x°))  

Proof. We choose a smooth function ¢p such that 9 --- 1 in Rz(x °) and ¢p - 0 outside R3k/2(x°), 
0 ~< 9 ~< 1 everywhere and ~9/~ = 0 on F~. We will assume that R2z(x °) C D(x°). We put 

d±,p(~) = x -i (p(~ + xe) - p(~)), A~ = -d_xd x, 0 <l'cl< Z / 2 

where e is the unit vector of the x axis. We introduce the vector (Zx, ~),  where 

and we will show that (Zx, ~ )  ~ K~. To do this we will prove that (1.2) and (1.3) hold. For the function 
= w - u the inequality ~($) ~> -8  obviously holds for $ e D~,. We therefore obtain 

2 
0 "c ( '~)  ---- (Wx -- U'c ) ( '~)  ---- V (.~) + ~ -  q)2 (.~)A~I) (X') -- 0 (~')(1 - ~0 2 ( .~))  + 

+ q~2 (~), 
tv (~ - ' r e )  +v (~ + xe)] ~ - 8  

2 

This denotes that there is an inequality of the form (1.3) 

wx >~ u~-~i in ~ v  (2.1) 

It can be shown, in the same way as in [9], that for Zx = (Wx, wx) the following relation holds 

[W,~ ~ L au -II on V v c~D(x °) (2.2) 
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Consequently, taking into account the fact that the function 9 is finite, we conclude that inequality (2.2) 
also holds on Iv. Inequalities (2.1) and (2.2) show that for the vector (Zx, ~ )  conditions (1.2) and (1.3) 
hold, and therefore (;C~, ~ )  e Kt. This indicates that we can substitute the vector (Zx, ~x) into (1.11) as 
a test vector. This leads to the inequality 

a(~, ¢p2A~) ~> (f,q)2a~Z)v + (g, 92A+~) (2.3) 

It is easy to verify that the upper estimate for the difference between the terms a(rl), tpEAxl]) and 
--a(dx(qrrl), dx(qn3)) c~m be found in terms of the right-hand side of inequality (2.4) written below, so 
that it follows from (2.3) that 

a(d~(9"q), d~(q~rl)) ~ c{llrlll 2 +lld~(qn])ll u (111111 H +11 fll0,ta * +llgll0,t~ )} (2.4) 

with a constant c which independent of x. Bearing (1.10) in mind, we conclude from (2.4) that 

lidx(q~)llHfav ) +lldx(q~)llsota ) <~ c (2.5) 

where the constant c is independent of x. It follows from (2.5) that 

H(av/), (q~) ~ H o (n) 

and hence we have the following inclusions 

Wx ~Hi(Rx(x°)n~v), U x ~Hl(R~.(x°)) 

(2.6) 
w x ~ H2(R~.(x°)n£~V), u x ~ H2(R~,(x°)) 

In the region D.~,, Fiqs (1.12) for Wcan be written in the form 

Wyy = F 

2 0 2 0 By virtue of (2.6) the inclusion F ~ L (R~,(x) n D, v holds, so that Wyy ~ L (Rx(x)  O D~,). In addition, 
by Eqs (1.12) the equations Uyy = G hold for U in the neighbourhood of the point x °, where, in view 
of (2.6), G ~ L2(Rx(x°). This proves Theorem 1. 

The theorem which follows gives additional smoothness compared with Theorem I for the case when 
there is no contact between the plates in the neighbourhood of a fixed point of  the crack. 

Theorem 2. Suppose all the conditions of the previous theorem are satisfied, and in addition 

w~:(x °) > u(x °) - 6 (2.7) 

Then 

W ~/'/2(Rx(x° ) n D~,), U ~/-/2(R;~(x°)) 

w z / P ( R x ( x  °) n f~v), u e n3(Rx(x°)) 
(2.8) 

Proof. We conclude from (2.7) and (1.5) that there is a neighbourhood D(x °) of the pointx ° such that 
in D(x U) O f l  v the folllowing equation holds, in the sense of distributions 

A2w =f3 (2.9) 

We will use the following fact, the proof of which can be found in [16]. Suppose D C R E is a bounded 
region with a fairly smooth boundary and . is a distribution on D which possesses the property , ,  V .  

1 2 H- (D). Then ~ e L (D), and a constant c, which depends on D, exists such that 

IIv IIL2(D ) ~< C{IIV IIH_]fD) +IIVv IIH.1(D) } 
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It follows from (2.6) that 3(tpw)/Ox % H 2' °(D~,). Hence, in the neighbourhood of the point x ° the 
derivatives of wx=, wy r. w ~  belong to L ". Equation (2.9) in D(x °) N D~, can be written in the form 

Wyyyy = h 

As proved above, the functions h, w~, Wyyyx belong to  I-/'l(~t~t i") D), where D is a certain neighbourhood 
of the point x °. Consequently, the ~nctions Wyyy belong to L2(D~ tq D1) and we have the following 
limit 

I w  2 ~ 2 2 2 I yyyllL2(t~¢ c~DD c{llWyyyllH_l(t~cc~Dt)+llwyyyyllH._tfflv~Di)+llWyyyxllH_l(t2vr~Dl)} 

where D1 is a neighbourhood of the point x °, D1 C D. Hence, we obtain the required inclusion (2.8) 
for w. In addition, the following equation holds in D(x°), in the sense of distributions 

A2U = g3 (2.10) 

so that, proceeding in the same way as above, we obtain inclusion (2.8) for the function u also. This 
proves Theorem 2. 

3. THE O P T I M A L  C O N T R O L  P R O B L E M .  
CRACKS OF M I N I M U M  O P E N I N G  

In this section we will investigate the problem of the control of external loads (f, g) with a quality 
functional 

J~(f,g) = II[Zl ldr  v 
r~ 

characterizing the opening of the crack (see [17]). As previously, (Z, ~) is the solution of boundary- 
value problem (1.5), corresponding to the right-hand side of (f, g). At the first stage we will prove the 
theorem on the existence of a solution of the optimal-control problem. We will further show that the 
solutions corresponding to cracks of zero aperture are infinitely differentiable for infinitely 
differentiable f and g. Despite the fact that, in this section, the parameter e will be fixed, the dependence 
of the quality functional on e will be pointed out. This is due to the fact that, later in Section 4, we will 
investigate the limit as e ---> 0. 

Suppose F x G C Lz(D~,) x L2(f~) is a convex, closed bounded set, and (f, g) ~ F x G. We then have 
the following assertion. 

Theorem 3. A solution of the minimization problem 

inf J~(f;g) (3.1) 
FxG 

exists. 

Proof. Suppose (fn, gn) ~ F x G is a minimizing sequence. For each n we can obtain a unique solution 
of the problem 

re (3.2) 

In view of the boundedness offn and gn in L2(~), the following limit follows from (3.2) 

IIZn IIH(taV) +ll~nllHo(fl ) ~< C (3.3) 

which is uniform in n. Choosing, ff necessary, a subsequence, we can assume that as n --> ** 

(X~, ~ )  ---> (Z, ~) weakly in H, strongly in L2(f~); [~n] ~ [X] strongly in Ll(Fv) 

This convergence enables us to take the limit as n --> ** in (3.2) and we obtain 
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I];(z)(~-x)+n;(~,)(E-~,))o, (Z,~)•K~, V(~,E)•Ke 
which means that Z --; z(f, g), g = ~(f, g). Hence 

inf Jt (j~,g) = lim infJ¢(fn,gn) >t J~(f,g) >t inf J~(j~,g) 
F x G  n- - )~  F x G  

and, consequently, the pair (f, g) obtained in fact solves optimal-control problem (3.1). This proves 
Theorem 3. 

It turns out that if the opening of the crack is zero in the neighbourhood of a certain point x ° • F v, 
for which w±(x °) > u(x °) - 6, and the right-hand sides o f f  and g are infinitely differentiable in the 
neighbourhood of thi:~ point, the solution of problem (1.5) is also infinitely differentiable in the region 
of the point x °. Our further discussion is devoted to justifying this assertion. The result on the smoothness 
of the solution will be proved for the case when x ° is the point of intersection of F and F~,, i.e. x ° • 
F O F v. The case when x ° ~ r o F v can be investigated more simply. It is mentioned in the note after 
the proof of Theorem 4. 

First, we note that, in the same way as was described earlier in [9], we can obtain the form of the 
boundary conditions in the neighbourhood of an arbitrary point£ • Fv\aF v by assuming that the solution 
1] = (X, ~) is sufficiently smooth, and that the inequality w±(£) > u(£) - 8 holds. The last inequality 
denotes that there is no contact between the two plates at the point x. That is, in addition to (1.2) the 
following boundary conditions hold (for simplicity we will assume that e = 1) 

[or(W)]=0, o.,(W)=0, [re(w)]=0, t(w)=0 on F v (3.4) 

[-lOw Im(w)l<- -t~v(W), m(w)|-~7|+6v(W)[W]v=O on F v (3.5) 
L U V J  

Here m(w) and t(w) a.re the bending moment and shear force on F v, defined by the formulae 

a a3w 
= ~ k m(w)=kAw+(1-k)~-~~'dv t(w) Ov Aw+(1-)~--~-$, $=(-v2,vl) 

and av(W) and as(W) are the normal and tangential components of the vector of the forces on F v 

{oij (W)vj } = Ov (W)v + o ,  (W)s 

The above boundary conditions must be understood formally in the sense that they hold on the 
assumption that the solution 1] = (X, ~) of problem (1.11) is fairly smooth. It is important that (1.2) 
and (3.4) (3.5) give a complete set of boundary conditions on F v in the following sense. If the equations 
of equilibrium and conditions (1.2), (1.4) and (3.4) (3.5) hold, we can infer variational inequality (1.11). 
In fact, below only some of the boundary conditions (3.4) and (3.5) will be necessary. 

Thus, we will formulate the main assertion of this section, relating to cracks of zero opening, i.e. cracks 
possessing the property [X] = 0. 

Theorem 4. Suppose 6 > 0, x ° • F O F v. We will assume that [X] = 0 on F v n D(x °) and 
f, g • C**(D(x °) O ~;, where D(x °) is a certain neighbourhood of the point x °. A neighbourhood 
Dl(X °) of the point x ° then exists such that the solution of problem (1.5) possesses the property 

X,~ • C'(Dl(x°)n~) 

Proof. The open set D(x °) O D~ can be represented in the form of the union D(x °) O f~v = 
D + U D- ,  where the regions D-- correspond to positive and negative directions of the normal v, i.e. 
for£  • D ± the inequalities y > ¥(x), y < W(x), £ -- (x, y), respectively, hold. In view of the assumption 
that the angle between F and F v at the point x ° is larger than zero, we can use the imbedding theorem, 
according to which the functions w and u will be continuous in ~ = f l  U F and ~ v  = D'v U F U F v, 
respectively. Hence, the inequality ~ > 0 ensures that the relation w > u - ~ holds in a certain 
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neighbourhood D(x °) of the point x °. In particular w±(£) > u(ti) - ~,~ ~ D(x °) n F v. So in D + and D- 
the following equation holds, in the sense of distributions 

A2w - f 3  = 0 

This equation also holds in D(x °) n ~. 

In fact, [X] = 0 on F ,  O D(x°), so that from (1.2) we obtain [0w/0v] = 0 on Fv n D(x°). This means that 
w ~ H2(D(x °) n f~) (see [18]). Bearing in mind the boundary conditions on F v O D(x °) of the form t(w) = O, 
[re(w)] = 0, as previously [1] it can be shown that 

(A2w-f3,to) = 0, VtO~C~(D(x°)n~) (3.6) 

which also proves the above assertion. The brackets (., 9) in (3.6) denote the action of the distribution on the 
element tO. 

Similarly, the condition [Z] = 0 on F v n D(x °) ensures the inclusion W ~ HI(D(x °) O ~). Hence, 
taking into account the boundary conditions o0.v j = 0 on F~, n D(x °) (t = 1, 2), in the same way as in 
[1], it can be shown that 

(t~jd(W)+ fitP)=O, V g ~ C ~ ( D ( x ° ) n ~ ) ,  i=1,2 

• • + - -  - -  - -  0 The mequahty w- (~) > u($) - 8, x ~ D(x ) n Fu, also ensures that Eq. (2.10) holds in D(x °) N ~. 
This indicates that the following equations hold in b ( x  °) O f~ 

A2w=f3, A 2 u = g 3 , - a 0 . j ( W ) = f  i, -oi j , j (U)=g i, i = 1 , 2  

Since the right-hand sides fi and gi here are functions that are infinitely differentiable in D(x °) O ~,  we 
obtain the statement of  the theorem (see [19, 20]). 

Note. Ifx ° ~ F~, x ° ~ F O F v and w±(x °) > u(x °) - 8, the equality I X I = 0 on F v n D(x °) also ensures that the 
0 0 solution X, ~ is infinitely differentiable in the neighbourhood of D(x ), provided that f, g ~ C**(D(x )). In other 

words, in this case the inclusion X, ~ ~ C**(D(x°)) holds. 
This assertion can be proved in the same way as Theorem 4, if we note that the inequality w($) > u($) - 8, 

holds for all $ e Dl(x °) O F v, where Ol(X 0) is a neighbourhood of the point x °. Moreover w±(.~) > u($) - 8, 
E DI(X 0) n F w. 

4. T H E  L I M I T  AS e --* 0 

Consider the case of  the approximate description of the condition of non-penetration of  the crack 
edges, corresponding formally to e = 0 in (1.2). As in the case when e > 0, when e = 0 we can consider 
the problem of the equilibrium of two plates and prove the existence of a solution of the optimal-control 
problem with a quality functional characterizing the opening of the crack edges. The purpose of this 
section is to investigate the convergence of the solutions of the optimal-control problems of the form 
(3.1) as e ~ 0. We will assume that F v is a rectilinear section parallel to the x axis. 

Thus, the limiting conditions of non-penetration, obtained from (1.2) and (1.3) have the form 

[W]v I> 0 on rv,  w I> u - ~5 in D w (4.1) 

We will introduce a set of permissible displacements of the plates, corresponding to constraints (4.1) 

Ko = {(Z, ~) ~ H(K2v) x Ho(n) l (z  , ~) satisfy conditions (4.1)} (4.2) 

Suppose the set F x G is chosen in the same way as before. For each fixed element (f, g) e F x G we 
can obtain a unique solution of the variational inequality 

o, (z,¢) Ko, Ko (4.3) 
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We again consider the quality functional describing the opening of the crack 

]o(f,g): Jttz]ldr~, 
r ,  

In this case the function ~ corresponds to the external loads (f, g) and is found from (4.3). 
A unique solution ,of the problem of the optimal control of external loads 

inf Jo ( f , g )  (4.4) 
FxG 

exists. The proof of this fact is simpler than the proof of Theorem 3, and we will therefore not dwell 
on it. 

Suppose (7~, ~,  re, ge) corresponds to the solution of optimal-control problem (3.1) for a given e, i.e. 
(f~, g~) is the solution of problem (3.1) while (X~, ~ )  is obtained from (1.5) when (f, g) = (f~, g~). The 
aim of the discussion below is to prove the assertion relating the solutions of optimal-control problems 
(3.1) and (4.4). We have the following result. 

Theorem 5. We cart choose from the sequence (7~, ~,  f~, g~) a subsequence, denoted as previously, 
such that 

(Xt, ~)  --* (X, ~) weakly in H(f~v) x H0(fl) 

f~, g~ "-) f, g weakly ill L2(~'~), mE ~ m0 

mt = v×Ginf Jc( f ,g ) ,  mo = i n f  Jo ( f , g )  

Here (~, ~, f, g) corresponds to the solution of optimal-control problem (4.4). 

Proof. Suppose_ ~(f,  g), ~(f, g) is the solution of variational inequality (1_.5) for given fixed f and g. 
We will take (~, ~) ~ K~0. Then (~, ~) ~ K~ for all e ~< e0. We substitute (~, ~) into inequality (1.5) as a 
test function. We obtain 

I1~¢ (f,g)llH(tav) +ll~e (f,g)llH0(ta) ~ c (4.5) 

uniformly with respect to e ~< ~0- Choosing, if necessary, a subsequence we can assume that as 
E ---~ 0 

)~(f, g) --') 2 weakly in H(D~), ~(f ,  g) ~ ~ weakly in H0(f~) (4.6) 

2~(f, g) ~ 2 -+ strongly in LI(F•) (4.7) 

El[.~w~--~' g)]1---> 0 strongly in L2(F~,) (4.8) 

We will take anarbitrary fixed element (~, ~) e K0 and construct, using the lemma proved above, 
the sequence (~,  ~)  e K~, which converges strongly in H(D~,) x H0(f~) to (~, ~). We then substitute 
the elements of this sequence as test functions into the inequality 

Using (4.6) we can here take the limit as E ---) 0. Condition (4.8) ensures that the inclusion (2, ~) ~/Co 
holds. The limit variational inequality will then have the form 

o, to, ro 

which denotes that ~ = ~(f, g), ~ = ~(f, g). Consequently, we then obtain from (4.7) 

J~(f, g) --* Jo(f, g), e ~ 0 (4.9) 



860 ~ M. Khludnev 

Suppose now that (f, g) is the solution of optimal-control problem (4.4), (4.3). By (4.9) we obtain 
mr ~ Jr(f, g) --')J0(f, g) = m0, and therefore 

limsupm r ~< m0 (4.10) 

On the other hand, from the fact that the set F x G is bounded in the space L2(Dw) x L2(f2) we have 

II (f~,g~)IIL2(n ) ~< c (4.11) 

uniformly with respect to e. Consequently, from the variational inequalities 

Fit, (X,)(X - Xe) + rig, (~t)(,~ - ~E ) ~> o, (X,~, ~ ) e K~, V(~, ~) e Kt (4.12) 

we derive the following limit, uniform with respect to 

I! Z~ IIn(n v) + II ~ IIH,,Cm -< c (4.13) 

We can assume from (4.11) and (4.13) that as e ---) 0 

f~, g~ ---) f, g weakly in L2(f2) (4.14) 

(X~, ~ )  ~ (X0, ~ )  weakly in H, strongly in L2(K2) (4.15) 

e] [~* '~]]  - ' - ~ O L ~ v  J str°nglyinL2(Fv) (4.16) 

%~(f, g) ---> Xo strongly in Ll(Fv) (4.17) 

Again bearing the lemma in mind, using (4.14)-(4.17) we take the limit as e ---) 0 in (4.12). We finally 
obtain the variational inequality 

1-I '  - + • - h , ( Z o ) ( Z - Z o )  I-I~o(~O)(~-~o)~ > O, (Zo,~o)~ K o, X/(~,~)~K o 

which indicates that Zo = Z(fo, go), ~ = ~(fo, to). 
As before, it can be shown that Jr(fr, gr) --'> Jo(fo, go) as e ~ O, and 

liminfmr >/Jo(fo,go) (4,18) 

From (4.10) and (4.18) we obtain that (f0, go) is the solution of optimal-control problem (4.4), (4.3) and 
me ---) m0. This proves Theorem 5. 

We will now justify the auxiliary assertion used to prove Theorem 5. We recall that F v is assumed 
here to be a rectilinear section parallel to the x axis. 

Le_mma. For any fixed element (~, ~) e K0, a sequence (Xr, ~ )  e Kr exists such that (Xr, ~r) ---) 
(~, ~) strongly in H(D.v) x H0(f2). 

Proof. We extend the graph of F v outside x = 1 smoothly so that the extension intersects the boundary F at a 
non-zero angle (Fig. 3). The region f2 v is then divided into two regions: f21, f22 with Lipschitz boundaries Off1, 
Of 22. As everywhere previously, the boundaries F~, and ~ are assumed to be different. The fact that the function 
(~, ~) belongs to the set K0 means that the following inequalities hold 

[W]v~>0 o n F  v, ~~>~-8 in f~v 

and the fact that the functions (~,  ~ )  belong to the set Kt denotes that the following inequalities hold 

[~lu>~lta~/aull on r v, w r ~ , , ~ - s  in tav 

To_prove the lemma it is sufficient to construct the sequence (~,  ~)  of the form (Xt, ~) such that 
(Xt, ~,)~ K~ and 
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Fig. 3. 

(~ ,  ~) strongly in H(fl~,) (4.19) 

Note that if the function I~" • [H 1" °(fly)]2 , which has the property 

[ ~ ] u = l [ a ~ / a ~ , l l  on r v (4.20) 

is constructed, while the functions ~ = (I~, fie) are defined in the region D~ by the formula (I~, ff,~) = (I~" + eI~', ~), 
the sequence (~e, ~) will be the required sequence. In fact, the convergence of  (4.19) is obvious and 

To construct the function l~, possessing property (4.20), we note that ~ = (0, 1) on r4. Since ~ e H2(D~), we 
have 6,ylc~ • Hl(fli) (i ~-- 1 ,2) ,  and hence the inclusions ~yl~ ~ Hl/2(af~3 (i -- 1, 2) hold (see [21]). 

Consider the following function on ~fll 

(~) = ~min{-[w--y(~)], [~y (~)]l, ~ F w 

to. ~ r v 

Then hv ~ H1/2(afh). Suppose h ~ H I (~0  is the extension of the function hT into the region ~1. Note that if we 
extend h by zero into 1,~2 we obtain a function in D~ which belongs to HI(D~,). This extension, as before, will be 
denoted by h. We can now define the vector function W as follows: W = (0, h) in D~. In this case 

[~]u =ma~{-[%], [%1}=11%11 on r~, 
where I[~y] I = I [agCi~ ] I on r v. 

Thus, we have constructed a function I~' e [H 1' °(D~)]2 having the required property (4.20), which completes 
the proof of the lemma. 

This research was supported by the Russian Foundation for Basic Research (97-01-00896). 

R E F E R E N C E S  

1. KHLUDNEV, A. M., The contact problem for a shallow shell with a crack. Pr/k£ Mat. Mekh., 1995, 59(2), 318-326. 
2. KHLUDNEV, A. M. and SOKOLOWSKI, J., Modelling and Control in Solid Mechanics. Birkhauser, Basel, 1977, p. 366. 
3. MAZ'YA, V. G., The behaviour close to the boundary of the solutions of the Dirichlet problem for a biharmonic operator. 

Dold Akad. Nauk SSSR, 1977, 235(6), 1263-1266. 
4. OLEINIK, O. A., KONDRAT'YEV, V. A. and KOPACHEK, I., The asymptotic properties of the solutions of the biharmonic 

equation. Diff. Urav., 1981, 17(10), 1886-1899. 
5. KONDRAT'YEV,, V. A., KOPACHEK, I. and OLEINIK, O. A., The behaviour of the generalized solutions of second-order 

elliptic equations and of the system of the theory of elasticity in the neighbourhood of a boundary point. In Proceedings of 
the I. G. Petrovskii Seminar. Izd. MGU, Moscow, Vol. 8, 1982, pp. 135-152. 

6. MOROZOV,, N. E, Mathematical Problems of Crock Theory. Nauka, Moscow, 1984, pp. 7-11. 
7. GRISVARD, P., Singularities in Boundary Value Problems. Mason Paris; Springer, Berlin, 1992, p. 198. 
8. NICAISE, S., About the Lain6 system in a polygonal or polyhedral domain and coupled problem between the Lam6 system 

and the plate equati¢,n. 1. Regularity of the solutions Ann: Scuola Norm. Super. Pisa. Ser. 4, 1992, 19(3), 327-361. 
9. KI-ILUDNEV,, A. M., On contact problem for a plate having a crack. Control and Cybernetics, 1995, 240), 349-361. 

10. FREHSE, J., Two dimensional variational problems with thin obstacles. Math. Z., 1975, 143, 3, 279-288. 
11. SCHILD, B., A regularity result for polyharmonic variational inequalities with thin obstacles. Ann. Sc. normale super Pisa. 

CL Sci., 1984, 11(1), 87-122. 
12. KHLUDNEV, A. M.,, Extremal forms of cuts in a plate, lzv. Ross. Akad. Nauk, MTT, 1, 170-176, 1992. 
13. KHLUDNEV, A. M.. Existence of extreme unilateral cracks in a plate. Control and Cybernetics, 1994, 23(3), 453--460. 



862 A.M. Khludnev 

14. OHTSUKA, K., Generalized J-integral and three dimensional fracture mechanics. Hiroshima Math. J., 1981, 11(1), 21-52. 
15. OHTSUKA, K., Mathematical aspects of fracture mechanics. Lecture Notes in Numer Appl. Anal., 1994, 13, 39--59. 
16. DUVAU~, G. and LIONS J.-L., Les Indquations en Mdcanique et en Physique. Dunod, Paris, 1972. 
17. GOL'DSHTEIN, R. V. and YENTOV, V. M., Qualitative Methods in Continuum Mechanics. Nauka, Moscow. 1989. 
18. MIKHAILOV,, V. E, PartialDifferentialEquations. Nauka, Moscow, 1976. 
19. LIONS, J. -L. and MAGENES, E., Probldmes aux Limites Non Homogdnes et Applications, vol. 1. Dunod, Paris, 1968. 
20. FICHERA, G., Boundary-value problems of elasticity with unilateral constraints. In Handbuch derPhysik, vol. 6a/2. Springer, 

Berlin, 1972. 
21. BAIOCCHI, C. and KAPELO, C. A., Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. 

Wiley, Chichester, 1984. 

Translated by R.C.G. 


